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• neutral atoms (~alkali)	


• bosons/fermions	


• very dilute gas (d~μm)	


• ultracold (T<Tc~100nK)	


• slow (E~kHz)	


• isolated	


• clean (but dopable)	


• negligible spin-orbit coupling (but..)	


• tuneable:	


★chemical potential	


★ interactions	


★geometries

Ultracold quantum gases
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Ideal quantum playground
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Topological states predicted in:	


• fermionic p-wave superfluids*	


• 1D atomic chains in a superfluid bath 	


• fermionic s-wave superfluids in non-Abelian gauge fields**	


• …

My contributions in these directions:  
*  PM, Sanpera, and Lewenstein, PRA (2010)	


** Kubasiak, PM, and Lewenstein, EPL (2010)
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• break A/B sublattice inversion symmetry 
makes Dirac fermions massive	



• deform the lattice to displace, merge and 
annihilate pairs of Dirac cones

Tuning the honeycomb 
(a graphene emulator with variable lattice geometry)
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Gauge fields in QM

Proposals:  Jaksch&Zoller, NJP 2003	


                Osterloh et al., PRL 2005	



                    … (and hundreds of papers more) …	


                 

Methods:	


 adiabatic Raman passage	


 adiabatic control of superpositions 

    of degenerate dark states	


 spatially varying Raman coupling	


 Raman-induced transitions	



    to auxiliary states in optical lattices 

Artificial gauge potentials for neutral atoms	


Dalibard, Gerbier, Juzeliunas, and Öhberg, RMP (2011)	



!
Light-induced gauge fields for ultracold atoms	



Goldman, Juzeliunas, Öhberg, and Spielman, arXiv (2014)	


(Rep. Prog. Phys., in press)

REVIEWS:
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Problem: atoms are charge-neutral	


Solution: engineer synthetic ones?
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spin flip ↔ momentum kick

Spin-orbit coupling for neutral atoms

spin-orbit gap

increasing intensity of Raman lasers

Lin et al., Nature 2011 (JQI-NIST)	


P. Wang et al., PRL 2012 (Shanxi U.)	


L. W. Cheuk et al., PRL 2012 (MIT)

off-resonant 
two-photon	



Raman transitions
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Q. Sim. & Extra Dimensions
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Quantum simulation with ultracold atoms:	


 Hubbard model, MI/SF transition, …	


 relativistic dispersions, sonic black holes, …	


 strongly-correlated states (QH, spin liquids, …)	


!

Extra dimensions (=non-spatial):	


 attempts to unify gravitation with electro-weak forces 

(Kaluza-Klein, Yang-Mills, ...)	


 thermal QFT: compactification of euclidean time leads to 

Matsubara frequencies

quantum simulation of an extra dimension?

extra-dims are usually 
discrete and compact



The simple idea
• use a system with D spatial dimensions	



• encode the (D+1)th dimension in an internal degree of 
freedom (e.g., the spin)
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r̃ = (r,�)

couple consecutive spin states 
(”spin hopping”)
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Celi, PM, Ruseckas, Goldman, Spielman, Juzeliunas, and Lewenstein, PRL (2014)

usual hopping 
(conserves spin)
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Large N systems

interactions in earth-alkali atoms are SU(N) invariant!

species N

Li 2,3,...
87 3
173 6

40 10
87 10

161-163 22

173Yb @ LENS:  
Pagano et al.	



Nat. Phys. (2014)
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Simplest implementation
Requires: 
•atoms with three addressable internal states in a 1D optical lattice (e.g., F=1 87Rb) 
•two       Raman beams, providing recoil 
•uniform B-field in the z-direction 
!
Yields: 
•laser-assisted, position-dependent  
complex spin-tunnellings 
•non-staggered magnetic flux  
   (and large, easily up to π-flux!) 
•“∞-ranged” interactions

�R kR = 2⇤ cos �/⇥R

Celi, PM, Ruseckas, Goldman, Spielman,  
Juzeliunas, and Lewenstein, PRL (2014)

�

(a) Layout (b) Level diagram
1D atomic gas

Raman Raman

Lattice Lattice

(c) Concept

(a) Layout (b) Level diagram
1D atomic gas

Raman Raman

Lattice Lattice

(c) Concept



Spectrum with 3 internal states
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States inside the Raman-gap have 
i.e., are chiral edge states on the synthetic lattice  
  (analogous to those found in QH systems)

hmi ⇡ ±1



Hofstadter strip
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Our system continuously connects to  
the textbook problem of a  
regular 2D square lattice, 
pierced by a uniform magnetic field:
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Edge state dynamics

17

edge states

edge states

A three-component Fermi gas (“F=1”) in a harmonic trap 
!
for t<0, the gas is confined by hard walls in the pink region



Edge state dynamics
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edge states

edge states

⇥0 = 0.5t

� = 1/2�

EF = �1.4t

remove the “pink” confinement, 
but leave the harmonic trap:

spin-momentum locked 
currents flow along the edge

A three-component Fermi gas (“F=1”) in a harmonic trap 
!
for t<0, the gas is confined by hard walls in the pink region



Edge state dynamics for  40K
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(10 internal states)
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Interesting topologies
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Möbius strip	


linear chain in the spatial dir.,  

π/2 twist in spin

possible boundary conditions 
 along the spin direction:	



 open	


 closed	


 twisted

Klein bottle	


ring in the spatial dir.,  
π/2 twist in spin

rf rf
mF  =   -1    0    1



From open to closed b.c.
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+
mF  =   -1          0         1

=

?

close the spin-dimension
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Spectrum of a 3-component gas 
with closed b.c.

The spectrum has the fractal structure of a Hofstadter butterfly:

magnetic flux



Outlook / Conclusions
• Q. gases: an ideal arena for topological properties	



• Exploiting an internal d.o.f. as an extra-dimension:	



★ uniform and large fluxes	



★ direct imaging of edge states and their helicity	



★ Hofstadter fractal spectrum	



• Role of interactions on edge state robustness	



• Simulations of Quantum Random Walks	



• Quantum simulation of high-energy theories,  
and 4D systems (e.g., critical exponents of phase transitions)
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Celi, PM, Ruseckas, Spielman, Juzeliunas, and Lewenstein	



Synthetic gauge fields in synthetic dimensions  
Phys. Rev. Lett. 112, 043001 (2014)


